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2 Phys. Math. et Théorique, Université Montpellier II, F-34095 Montpellier, France
3 Rutherford Laboratory, Chilton, Didcot OX11 OQX, UK
4 Inst. Theor. Physics, Warsaw University, PL-00681 Warsaw, Poland
5 DESY, Deutsches Elektronen-Synchrotron, D-22603 Hamburg, Germany

Received: 6 June 1998 / Published online: 15 October 1998

Abstract. Charginos χ±
1 are expected to be the lightest observable supersymmetric particles in many

supersymmetric models. We present a procedure which will allow to determine the chargino mixing angles
and, subsequently, the fundamental SUSY parameters M2, µ and tan β by measurements of the total cross
section and the spin correlations in e+e− annihilation to χ+

1 χ−
1 chargino pairs.

1 Introduction

In supersymmetric theories, the spin–1/2 partners of the
W boson and charged Higgs boson, W̃± and H̃±, mix to
form chargino mass eigenstates χ̃±

1,2. The mass eigenvalues
mχ̃±

1,2
and the mixing angles φL, φR are determined by the

elements of the chargino mass matrix in the (W̃−, H̃−)
basis [1]

MC =
(

M2
√

2mW cos β√
2mW sinβ µ

)
(1)

which is built up by the fundamental supersymmetric pa-
rameters1: the gaugino mass M2, the Higgs mass param-
eter µ, and the ratio tanβ = v2/v1 of the vacuum expec-
tation values of the two neutral Higgs fields which break
the electroweak symmetry. Once charginos will have been
discovered, the experimental analysis of their properties,
production and decay mechanisms, will therefore reveal
the basic structure of the underlying low–energy super-
symmetric theory.

Charginos are produced in e+e− collisions, either in
diagonal or in mixed pairs [2]. In the present note, we
will focus on the diagonal pair production of the lightest
chargino χ̃±

1 in e+e− collisions,

e+e− → χ̃+
1 χ̃−

1

The second chargino χ̃±
2 is generally expected to be sig-

nificantly heavier than the first state. At LEP2 [3], and
potentially even in the first phase of e+e− linear colliders
(see e.g. [4]), the chargino χ̃±

1 may be, for some time, the

1 The chargino/neutralino sector is assumed to be CP–
invariant in the following analysis. The consequences of CP
non–invariance will be discussed briefly in the Appendix.

only chargino state that can be studied experimentally in
detail.

Even in this situation the underlying fundamental pa-
rameters can be extracted from the mass mχ̃±

1
, the total

production cross section, and the measurement of the po-
larization with which the charginos are produced.

The χ̃ polarization vectors and χ̃–χ̃ spin–spin correla-
tion tensors can be determined from the decay distribu-
tions of the charginos. Beam polarization is helpful but not
necessarily required. We will assume that the charginos
decay into the lightest neutralino χ̃0

1, which is taken to be
stable, and a pair of quarks and antiquarks or leptons and
neutrinos: χ̃±

1 → χ̃0
1 + ff̄ ′. It is very important to note,

however, that no detailed information on the decay dy-
namics, nor on the structure of the neutralino, is needed
to carry out the spin analysis [5]. Thus the analysis of the
chargino properties is separated from the neutralino sec-
tor. Since two neutral particles χ̃0

1 escape undetected, it
is not possible to reconstruct the events unambiguously.
The partial information on the chargino polarizations is
nevertheless sufficient to extract the fundamental super-
symmetric parameters up to at most a two–fold discrete
ambiguity. In contrast to earlier analyses [6,7], we will not
elaborate on global chargino/neutralino fits but rather at-
tempt to explore the event characteristics to isolate the
chargino sector.

The analysis will be based strictly on low–energy su-
persymmetry. Once these parameters will have been ex-
tracted experimentally, they may be confronted with the
relations as predicted in Grand Unified Theories for in-
stance. The paper will be divided into four parts. In Sect. 2
we briefly recapitulate the elements of the mixing for-
malism for the sake of convenience. In Sect. 3 the cross
sections for chargino production and the chargino polar-
ization vectors are given. The analysis power for mea-
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suring the chargino polarization vectors and spin correla-
tions is exemplified for appropriate decay modes in Sect. 4.
In Sect. 5 we describe a set of observables which can be
used in measurements of angular correlations to extract
the fundamental supersymmetric parameters in a model–
independent way. Conclusions are given in Sect. 6. In an
appendix, we discuss the impact of potential CP non–
invariance in the chargino/neutralino sector on the present
analysis.

2 Mixing formalism

Since the chargino mass matrix MC is not symmetric,
two different matrices acting on the left– and right–chiral
(W̃ , H̃) states are needed to diagonalize the matrix. The
lightest of the two eigenvalues is given by [1]

m2
χ̃±

1
=

1
2

[
M2

2 + µ2 + 2m2
W (2)

−
√

(M2
2 + µ2 + 2m2

W )2 − 4(M2µ − m2
W sin 2β)2

]

The left– and right–chiral components of the mass eigen-
state χ̃−

1 are related to the wino and higgsino components
in the following way,

χ̃−
1L = W̃−

L cos φL + H̃−
1L sinφL

χ̃−
1R = W̃−

R cos φR + H̃−
2R sinφR (3)

with the rotation angles

cos 2φL

= − M2
2 − µ2 − 2m2

W cos 2β√
(M2

2 + µ2 + 2m2
W )2 − 4(M2µ − m2

W sin 2β)2

sin 2φL

= − 2
√

2mW (M2 cos β + µ sinβ)√
(M2

2 + µ2 + 2m2
W )2 − 4(M2µ − m2

W sin 2β)2

and

cos 2φR

= − M2
2 − µ2 + 2m2

W cos 2β√
(M2

2 + µ2 + 2m2
W )2 − 4(M2µ − m2

W sin 2β)2

sin 2φR

= − 2
√

2mW (M2 sinβ + µ cos β)√
(M2

2 + µ2 + 2m2
W )2 − 4(M2µ − m2

W sin 2β)2
(4)

As usual, we take tan β positive, M2 positive and µ of
either sign.

The three fundamental supersymmetric parameters
M2, µ and tanβ can be extracted from the three chargino
χ̃±

1 parameters: the mass mχ̃±
1

and the two mixing angles
φL and φR of the left– and right–chiral components of the
wave function. These mixing angles are physical observ-
ables and they can be measured in the process e+e− →

Fig. 1. The three mechanisms contributing to the production
of diagonal chargino pairs χ̃+

1 χ̃−
1 in e+e− annihilation

χ̃+
1 χ̃−

1 if the polarization states of the charginos are ana-
lyzed.

The two angles φL and φR define the couplings of the
chargino–chargino–Z vertices and the electron–sneutrino–
chargino vertex:

〈χ̃−
1L|Z|χ̃−

1L〉 = − e

sW cW

[
s2

W − 3
4

− 1
4

cos 2φL

]

〈χ̃−
1R|Z|χ̃−

1R〉 = − e

sW cW

[
s2

W − 3
4

− 1
4

cos 2φR

]

〈χ̃−
1R|ν̃|e−

L 〉 = − e

sW
cos φR (5)

where s2
W = 1 − c2

W ≡ sin2 θW . The coupling to the hig-
gsino component, being proportional to the electron mass,
has been neglected in the sneutrino vertex; the sneutrino
couples only to left–handed electrons. Since the photon–
chargino vertex is diagonal, it does not depend on the
mixing angles:

〈χ̃−
1L,R|γ|χ̃−

1L,R〉 = e (6)

The parameter e is the electromagnetic coupling which
will be defined at an effective scale which is identified with
the c.m. energy

√
s.

3 The production of polarized charginos

The process e+e− → χ̃+
1 χ̃−

1 is generated by the three
mechanisms shown in Fig. 1: s–channel γ and Z exchanges,
and t–channel ν̃ exchange. The transition matrix element,
after a Fierz transformation of the ν̃–exchange amplitude,

T
(
e+e− → χ̃+

1 χ̃−
1

)
=

e2

s
Qαβ

[
v̄(e+)γµPαu(e−)

]
× [

ū(χ̃−
1 )γµPβv(χ̃+

1 )
]

(7)

can be expressed in terms of four bilinear charges, classi-
fied according to the chiralities α, β = L, R of the associ-
ated lepton and chargino currents

QLL = 1 +
DZ

s2
W c2

W

(s2
W − 1

2
)
(

s2
W − 3

4
− 1

4
cos 2φL

)

QLR = 1 +
DZ

s2
W c2

W

(s2
W − 1

2
)
(

s2
W − 3

4
− 1

4
cos 2φR

)

+
Dν̃

4s2
W

(1 + cos 2φR)
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QRL = 1 +
DZ

c2
W

(
s2

W − 3
4

− 1
4

cos 2φL

)

QRR = 1 +
DZ

c2
W

(
s2

W − 3
4

− 1
4

cos 2φR

)
(8)

The first index in Qαβ refers to the chirality of the e± cur-
rent, the second index to the chirality of the χ̃±

1 current.
The ν̃ exchange affects only the LR chirality charge while
all other amplitudes are built up by γ and Z exchanges.
Dν̃ denotes the sneutrino propagator Dν̃ = s/(t − m2

ν̃),
and DZ the Z propagator DZ = s/(s−m2

Z + imZΓZ); the
non–zero width can in general be neglected for the ener-
gies considered in the present analysis so that the charges
are real.

For the sake of convenience we also introduce the quar-
tic charges [8]

Q1 =
1
4

[|QRR|2 + |QLL|2 + |QRL|2 + |QLR|2]
Q2 =

1
2
Re [QRRQ∗

RL + QLLQ∗
LR]

Q3 =
1
4

[|QRR|2 + |QLL|2 − |QRL|2 − |QLR|2] (9)

and

Q′
1 =

1
4

[|QRR|2 + |QRL|2 − |QLR|2 − |QLL|2]
Q′

2 =
1
2
Re [QRRQ∗

RL − QLLQ∗
LR]

Q′
3 =

1
4

[|QRR|2 + |QLR|2 − |QRL|2 − |QLL|2] (10)

The measurement of the quartic charges Q1 to Q′
3 will

allow us to extract the two terms cos 2φL and cos 2φR

unambiguously. The corresponding quantities sin 2φL and
sin 2φR are determined up to a sign ambiguity.

Defining the χ̃−
1 production angle with respect to the

electron flight–direction by Θ, the helicity amplitudes can
be determined from (7). While electron and positron he-
licities are opposite to each other in all amplitudes, the χ̃−

1
and χ̃+

1 helicities are in general not correlated due to the
non–zero masses of the particles; amplitudes with equal
χ̃±

1 helicities vanish only ∝ mχ̃±
1
/
√

s for asymptotic ener-
gies. Denoting the electron helicity by the first index, the
χ̃−

1 and χ̃+
1 helicities by the remaining two indices, the

helicity amplitudes T (σ;λ, λ̄) = 2πα〈σ;λλ̄〉 are given as
follows [9],

〈+; ++〉 = −
√

1 − β2 [QRR + QRL] sinΘ

〈+; +−〉 = − [(1 + β)QRR + (1 − β)QRL] (1 + cos Θ)
〈+;−+〉 = + [(1 − β)QRR + (1 + β)QRL] (1 − cos Θ)

〈+;−−〉 = +
√

1 − β2 [QRR + QRL] sinΘ (11)

and

〈−; ++〉 = −
√

1 − β2 [QLR + QLL] sinΘ

〈−; +−〉 = + [(1 + β)QLR + (1 − β)QLL] (1 − cos Θ)
〈−;−+〉 = − [(1 − β)QLR + (1 + β)QLL] (1 + cos Θ)

〈−;−−〉 = +
√

1 − β2 [QLR + QLL] sinΘ (12)

where β =
√

1 − 4m2
χ̃±

1
/s is the χ̃±

1 velocity in the c.m.

frame. From these amplitudes the production cross sec-
tion, the χ̃−

1 and χ̃+
1 polarization vectors and the χ̃–χ̃

spin–spin correlation tensors can be determined.
The final state probability may be expanded in terms

of the unpolarized cross section, the polarization vectors of
χ̃−

1 and χ̃+
1 , and the spin–spin correlation tensor. Defining

the ẑ axes by the χ̃± momenta, the x̂ axes in the produc-
tion plane (rotated counter-clockwise by 90o from the χ̃−
flight direction), and ŷ = ẑ × x̂ in the rest frames of the
charginos, cross section and spin–density matrices may be
written as [10]:

dσ

d cos Θ
(λλ′; λ̄λ̄′)

=
πα2

32s
β

∑
σ=±

〈σ;λλ̄〉〈σ;λ′λ̄′〉∗

=
dσ

d cos Θ

1
4

[
(I)λ′λ(I)λ̄λ̄′ + Pi(τ i)λ′λ(I)λ̄λ̄′

+P̄i(I)λ′λ(τ i)λ̄λ̄′ + Qij(τ i)λ′λ(τ j)λ̄λ̄′

]
(13)

λ(λ′) and λ̄(λ̄′) are twice the helicities, ±1, of the χ̃−
1

and χ̃+
1 particles in the final state. The τ i are the Pauli

matrices with respect to the reference frame introduced
above.

Alternatively, the polarization vectors and the spin–
spin correlation matrix may be defined in the following
covariant way. Denoting the χ̃−

1 spin–quantization axis
by nµ, the χ̃+

1 axis by n̄µ, the cross section for e+e− →
χ̃−

1 (n)χ̃+
1 (n̄) may be written [11]

dσ

d cos Θ
(n, n̄) =

dσ

d cos Θ

1
4

[
1 − Pµnµ − P̄µn̄µ + Qµνnµn̄ν

]
(14)

The two representations are related through the identities

Pi = −Pµηµ
i , P̄i = −P̄µη̄µ

i , Qij = Qµνηµ
i η̄ν

j (15)

with ηi(η̄i) being the three unit vectors in the particle
(antiparticle) rest frame Lorentz–boosted to the labora-
tory frame.

3.1 The production cross section

The unpolarized differential cross section is given by the
average/sum over the helicities:

dσ

d cos Θ
(e+e− → χ̃+

1 χ̃−
1 ) =

πα2

32s
β

∑
σλλ̄

|〈σ;λλ̄〉|2 (16)

Carrying out the sum, one finds the following expression
for the cross section in terms of the quartic charges:

dσ

d cos Θ
(e+e− → χ̃+

1 χ̃−
1 ) (17)

=
πα2

2s
β

{
(1 + β2 cos2 Θ)Q1 + (1 − β2)Q2 + 2β cos ΘQ3

}
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Fig. 2. The cross section for the production of charginos, a as
a function of the c.m. energy with mν̃ = 200GeV, and b as
a function of the sneutrino mass with

√
s = 200GeV for the

representative set of SUSY parameters in (18): solid line for the
gaugino case, dashed line for the higgsino case, and dot-dashed
line for the mixed case

If the production angle could be measured unambiguously
on an event–by–event basis, the quartic charges could be
extracted directly from the angular dependence of the
cross section.

The total production cross section is shown in Fig. 2 as
a function of (a) the c.m. energy for a fixed sneutrino mass,
and (b) the sneutrino mass at the c.m. energy of 200 GeV
for a representative set of parameters. The parameters are
chosen in the higgsino region M2 � |µ|, the gaugino region
M2 � |µ| and in the mixed region M2 ∼ |µ| for tanβ = 2
as

gaugino region : (M2, µ) = (81 GeV,−215 GeV)
higgsino region : (M2, µ) = (215 GeV,−81 GeV)
mixed region : (M2, µ) = (92 GeV,−93 GeV)

(18)

for which the light chargino mass mχ̃±
1

is approximately
95 GeV. The sharp rise of the production cross section in
Fig. 2a allows to measure the chargino mass mχ̃±

1
very pre-

cisely. In Fig. 2b it is shown that the ν̃–exchange diagram,
as well-known, leads to a strong destructive interference
for the gaugino and mixed regions, while the dependence
of the cross section on mν̃ decreases as the higgsino com-
ponent of the chargino increases. Prior or simultaneous
determination of mν̃ is therefore necessary to determine
the other SUSY parameters.

Figure 3 exhibits the angular distribution as a function
of the scattering angle for the same parameters as in (18)
at a c.m. energy of (a) 200 GeV and (b) 500 GeV. The an-
gular distribution depends strongly on the (M2, µ) param-
eter values. The peak in the forward region for the gaugino
and mixed points is due to the t-channel sneutrino ex-
change; the distribution is almost forward-backward sym-
metric in the higgsino scenario.

3.2 The chargino polarization vectors

The polarization vector P = (PT ,PN ,PL) is defined in the
rest frame of the particle χ̃−

1 . PL denotes the component

−1.0 −0.5 0.0 0.5 1.0
cosΘ

0.0

0.5

1.0

dσ
/d

co
sΘ

 [p
b]

−1.0 −0.5 0.0 0.5 1.0
cosΘ

0.0

0.5

1.0

dσ
/d

co
sΘ

 [p
b]

(a) (b)

√ s=500 GeV

√ s=200 GeV

Fig. 3. The angular distribution as a function of the scattering
angle at c.m. energies a 200 and b 500GeV for the set of SUSY
parameters in (18) and mν̃ = 200GeV

parallel to the χ̃−
1 flight direction in the c.m. frame, PT

the transverse component in the production plane, and
PN the component normal to the production plane. These
three components can be expressed by helicity amplitudes
in the following way:

PL =
1
4

∑
σ=±

{|〈σ; ++〉|2 + |〈σ; +−〉|2

−|〈σ;−+〉|2 − |〈σ;−−〉|2} /N

PT =
1
2
Re

{∑
σ=±

[〈σ; ++〉〈σ;−+〉∗

+〈σ;−−〉〈σ; +−〉∗]

}
/N

PN =
1
2
Im

{∑
σ=±

[〈σ;−−〉〈σ; +−〉∗

−〈σ; ++〉〈σ;−+〉∗]

}
/N (19)

with the normalization

N =
1
4

∑ [|〈σ; ++〉|2 + |〈σ; +−〉|2

+|〈σ;−+〉|2 + |〈σ;−−〉|2] (20)

The corresponding polarization 4–vectors can readily be
expressed in terms of the quartic charges,

Pµ =
8mχ̃−

1

s

{
(l̄ − l)µ[Q′

1 + Q′
2 + β cos ΘQ′

3]

+(l + l̄)µ[Q′
3 + β cos Θ(Q′

1 − Q′
2)]

}
/N

P̄µ =
8mχ̃+

1

s

{
(l̄ − l)µ[Q′

1 + Q′
2 + β cos ΘQ′

3]

−(l + l̄)µ[Q′
3 + β cos Θ(Q′

1 − Q′
2)]

}
/N (21)

with, correspondingly,

N = 4{(1 + β2 cos2 Θ)Q1 + (1 − β2)Q2

+2β cos ΘQ3} (22)
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Fig. 4. The angular dependence of the longitudinal polariza-
tion PL and the transverse polarization PT for the same pa-
rameters as for the cross section (18) at c.m. energies a 200
and b 500GeV; solid line for the gaugino case, dashed line for
the higgsino case, and dot-dashed line for the mixed case

The vectors lµ and l̄µ are the 4–momenta of the incoming
electrons and positrons, respectively.

The normal component can only be generated by com-
plex production amplitudes. Non-zero phases are present
in the fundamental supersymmetric parameters if CP is
broken in the supersymmetric interaction [1]. Also, the
non–zero width of the Z boson and loop corrections gen-
erate non–trivial phases; however, the width effect is neg-
ligible for high energies and the effects due to radiative
corrections are small. Neglecting loops and the small Z–
width, the normal χ̃−

1 and χ̃+
1 polarizations are zero since

the χ̃1χ̃1γ and χ̃1χ̃1Z vertices are real even for non-zero
phases in the chargino mass matrix, and the sneutrino–
exchange amplitude is real too. The CP–violating phases
will change the chargino mass and the mixing angles [12]
but they do not induce complex charges in the production
amplitudes of the light chargino pairs (see Appendix).

The longitudinal and transverse components of the χ̃−
1

polarization vector can easily be obtained from the helicity
amplitudes or from the covariant representation:

PL = 4
{
(1 + β2) cos ΘQ′

1 + (1 − β2) cos ΘQ′
2

+(1 + cos2 Θ)βQ′
3
}

/N
PT = −4

√
1 − β2 sinΘ {Q′

1 + Q′
2 + β cos ΘQ′

3} /N (23)

where the normalization N is given in (22). The polar-
ization vector depends on the quartic charges Q′

1 to Q′
3,

which are independent out of the charges Q1 and Q3. Rep-
resentative examples of their size are shown as a function
of cos Θ in Fig. 4; the same parameters are adopted as
for the cross section in Fig. 2. The dependence of the lon-
gitudinal and transverse polarizations on the SUSY pa-

rameters is rather weak at
√

s = 200 GeV; close to the
production threshold, PL and PR are given by the same
combination of quartic charges:

PL → Q′
1 + Q′

2

Q1 + Q2
cos Θ and PT → −Q′

1 + Q′
2

Q1 + Q2
sinΘ (24)

The sensitivity is stronger at
√

s = 500 GeV where the
gaugino scenario is clearly separated from the higgsino
scenario.

3.3 Chargino spin–correlations

The three quartic charges Q1, Q2 and Q3 determine the Θ
dependence of the cross section. This would be sufficient
for measuring the charges if the production angle Θ could
be determined unambiguously on an event–by–event basis.
However, this is not possible due to the two LSP’s which
escape detection. Additional information on these three
quartic charges can however be obtained from the obser-
vation of spin–spin correlations. Since they are reflected
in the angular correlations between the χ̃−

1 and χ̃+
1 de-

cay products, they are experimentally accessible directly.
Moreover, any dependence on the specific parameters of
the decay mechanisms can be eliminated as shown later
in detail.

The spin–spin correlation matrix Qij consists of nine
independent elements. They can be derived from the ηi ×
η̄j projections of the covariant matrix Qµν :

Qµν =
4
N

{
gµν(1 − cos2 Θ)β2Q2

−2
s
lµ l̄ν

[
(1 + β2 + 2β cos Θ)Q2

+(1 − β2)(Q1 − Q3)
]

−2
s
lν l̄µ

[
(1 + β2 − 2β cos Θ)Q2

+(1 − β2)(Q1 + Q3)
]}

(25)

Note that the spin-spin correlation matrix is built up again
by the same quartic charges Q1, Q2 and Q3 as the unpo-
larized cross section.

4 Chargino decays and correlations

4.1 Chargino decays

The polarization and spin–spin correlations of the
charginos can be inferred from the angular distributions
of the decay products. Assuming the neutralino χ̃0

1 to be
the lightest supersymmetric particle, several mechanisms
contribute to the decay of the chargino χ̃−

1 :

χ̃−
1 → χ̃0

1(q0) + f1(q)f̄2(q̄) [fi = l, ν, q]

The corresponding diagrams are shown in Fig. 5 for
the decay into quark pairs. The exchange of the charged
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Fig. 5. Chargino decay mechanisms; the exchange of the
charged Higgs boson is neglected

Higgs boson [replacing the W boson] can be neglected
since the couplings to the light SM leptons and quarks are
very small. In this case, all the components of the decay
matrix elements are of the left/right current×current form
which, after a simple Fierz transformation, may be written
for quark final states as2:

D [
χ̃−

1 → χ̃0
1dū

]
=

e2

2
√

2s2
W

[̄
u(χ̃0

1)γµ[FLPL + FRPR]u(χ̃1)
]

×
[
ū(d)γµPLv(ū)

]
(26)

with

FL =
2N12 cos φL +

√
2N13 sinφL

s′ − m2
W + imW ΓW

+
cos φL(N12 − 2Yq tan θW N11)

t′ − m2
d̃L

FR =
2N∗

12 cos φR − √
2N∗

14 sinφR

s′ − m2
W + imW ΓW

+
cos φR(N∗

12 + 2Yq tan θW N∗
11)

u′ − m2
ũL

(27)

where Yq = 1/6 is the quark hypercharge. Analogous ex-
pressions apply to decays into lepton pairs with Yl =
−1/2. The Mandelstam variables s′, t′, u′ in the form fac-
tors are defined in terms of the 4–momenta of χ0

1, d and
ū, respectively, as

s′ = (q + q̄)2 , t′ = (q0 + q)2 , u′ = (q0 + q̄)2 (28)

while N is the 4×4 matrix rotating the current neutralino
states (B̃, W̃ 3, H̃0

1 , H̃0
2 ) to the mass states (χ̃0

1, .., χ̃
0
4). The

neutralino mass matrix is given by:

MN (29)

=




M1 0 −mZsW cos β mZsW sin β
0 M2 mZcW cos β −mZcW sin β

−mZsW cos β mZcW cos β 0 −µ
mZsW sin β −mZcW sin β −µ 0




2 If m
χ±
1

> mν̃ , the two–body decay of the chargino into
a sneutrino and a charged lepton (with the sneutrino subse-
quently decaying into a neutrino and the lightest neutralino)
will be the dominant mode [13]. This case can be taken into
account by including the decay width of the sneutrino in the
propagators.

Besides the parameters M2, µ and tanβ, which already
appear in the chargino mass matrix, the only additional
parameter in the neutralino mass matrix is M1. [In Grand
Unified Theories where the gaugino masses are unified at
a high-scale, the parameters M1 and M2 are related by
M1 = 5

3 tan2 θW M2.]
The decay distribution of a chargino with polarization

vector P is formally analogous to the production ampli-
tude after crossing of the neutralino line and substitution
of the generalized charges,

|D|2(n) =
4π2α2

s4
W

{
−

(
t′ − m2

χ±
1

) (
t − m2

χ0
1

)
|FL|2

−
(
u′ − m2

χ±
1

) (
u′ − m2

χ0
1

)
|FR|2

−2mχ̃−
1
mχ̃0

1
sRe (FLF ∗

R)

+2(n · q̄)
[
mχ̃0

1

(
m2

χ̃±
1

− u′
)

Re (FLF ∗
R)

+mχ̃±
1

(
m2

χ̃0
1
− t′

)
|FL|2

]
−2(n · q)

[
mχ̃0

1

(
m2

χ̃±
1

− t′
)

Re (FLF ∗
R)

+mχ̃±
1

(
m2

χ̃0
1
− u′

)
|FR|2

] }
(30)

where nµ is the χ̃−
1 spin 4–vector. If the angles in the ff̄ ′

rest system are integrated out, the χ̃−
1 decay final state

is described by the energy and the polar angle of χ̃0
1 [or

equivalently by the energy and the polar angle of (f plus
f̄ ′)].

For the subsequent discussion of the angular correla-
tions between the two charginos in the final state, it is
convenient to determine the spin–density matrix elements
ρλλ′ ∼ DλD∗

λ′ for the kinematical configuration defined
before. Choosing the χ̃±

1 flight direction as quantization
axis, the spin–density matrix is given by the form

ρλλ′ =
1
2

(
1 + κ cos θ∗ κ sin θ∗eiφ∗

κ sin θ∗e−iφ∗
1 − κ cos θ∗

)

ρ̄λ̄λ̄′ =
1
2

(
1 + κ̄ cos θ̄∗ κ̄ sin θ̄∗eiφ̄∗

κ̄ sin θ̄∗e−iφ̄∗
1 − κ̄ cos θ̄∗

)
(31)

θ∗(θ̄∗) is the polar angle of the f1f̄2(f̄3f4) system in the
χ̃−

1 (χ̃+
1 ) rest frame with respect to the original flight direc-

tion in the laboratory frame, and φ∗(φ̄∗) the correspond-
ing azimuthal angle with respect to the production plane.
[The orientation of the reference frames has been defined
in the 3rd section.] The spin analysis–power κ, which mea-
sures the left–right asymmetry, depends on the final ud or
lν pair considered in the chargino decays. Since left– and
right–chiral form factors FL, FR, contribute at the same
time, the value of κ is determined by the masses and cou-
plings of all the particles involved; neglecting effects from
non–zero widths, loops and CP–noninvariant phases, κ
(and κ̄) is real. While it is important in general to keep the
momentum dependence of the W -propagator, the squark
propagators can be approximated by point propagators; in
this case, the analytic expression for κ is given by (32) (see
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κ(s′) = −
β′ (1 − µ2

0 − 2µ2
h

) (
|FL|2 − |FR|2

)
[
(1 − µ2

0)
2 + µ2

h (1 + µ2
0 − 2µ2

h)
] (

|FL|2 + |FR|2
)

− 6µ0µ2
hRe (FLF ∗

R)
(32)
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Fig. 6. The polarization analysis–power κ as a function of the
hadron invariant mass

√
s′ for the same set of parameters as

for the cross section (18)

top of the page) where µ0 = mχ̃0
1
/mχ̃−

1
, µh =

√
s′/mχ̃−

1

and β =
√

(1 − µ2
0 − µ2

h)2 − 4µ2
hµ2

0. Characteristic exam-
ples for κ(s′), without using the point-propagator approx-
imations, are presented in Fig. 6 for the same choice of pa-
rameters as Fig. 2b; the squark masses are set to 300 GeV,
and the gaugino masses are assumed universal at the unifi-
cation scale. The size of κ decreases as the invariant mass
of the fermion system increases. Good reconstruction of
the two–fermion system with a modest invariant mass is
therefore required to make efficient use of the polarization
observables [and to make a precise determination of the
end point of the invariant mass spectrum, which gives the
neutralino mass].

4.2 Angular correlations

Since the χ̃±
1 lifetime is very small, only the correlated

production and decay can be observed experimentally:

The analysis is complicated as the two invisible neutrali-
nos in the final state do not allow for a complete recon-
struction of the events. In particular, it is not possible to
measure the χ̃±

1 production angle Θ; this angle can be
determined only up to a two–fold ambiguity.

In covariant language the final state distributions are
found by combining the polarized cross section

dσ = 〈dσ〉1
4

[
1 − Pµnµ − P̄µn̄µ + Qµνnµn̄ν

]
(33)

with the polarized decay distributions

dΓ = 〈dΓ 〉
[
1 − P ′µnµ

]
dΓ̄ = 〈dΓ̄ 〉

[
1 − P̄ ′µn̄µ

]
(34)

Inserting the completeness relations∑
nµnν = −gµν + kµkν/m2

χ̃−
1

= ηµν [etc] (35)

the overall event topology can be calculated from the for-
mula

dσfinal = 〈dσ〉〈dΓ 〉〈dΓ̄ 〉1
4

[
1 + ηµαPµP ′α + η̄νβP̄νP̄ ′β

+ηµαη̄νβQµνP ′αP̄ ′β
]

(36)

with covariant expressions for Pµ etc as noticed earlier.
This formula provides the basis for deriving any distribu-
tion or correlation between the final state particles.

Alternatively we may choose the helicity analysis to in-
terpret the event topology. Denoting the matrix elements
M =

∑
Tλλ̄DλDλ̄, the 7–fold differential cross section

can be derived from the transition probability |M|2 =∑
Tλλ̄T ∗

λ′λ̄′ρλλ′ ρ̄λ̄λ̄′ :

d7σ(e+e− → χ̃−
1 χ̃+

1 → χ̃0
1χ̃

0
1(f1f̄2)(f̄3f4))

d cos Θds′d cos θ∗dφ∗ds̄′d cos θ̄∗dφ̄∗

=
α2β

124πs
Br(χ̃− → χ̃0

1f1f̄2)Br(χ̃+ → χ̃0
1f̄3f4)

×Σ(Θ; s′, θ∗, φ∗; s̄′, θ̄∗, φ̄∗) (37)

with

Σ =
∑
λλ̄

∑
λ′λ̄′

∑
σ

〈σ;λλ̄〉〈σ;λ′λ̄′〉∗ρλλ′ ρ̄λ̄λ̄′ (38)

The unobservable χ̃±
1 production angle Θ will be inte-

grated out and, for the sake of simplicity, the (f1f̄2) and
(f̄3f4) invariant masses

√
s′,

√
s̄′ too. The integrated cross

section

d4σ(e+e− → χ̃−
1 χ̃+

1 → χ̃0
1χ̃

0
1(f1f̄2)(f̄3f4))

d cos θ∗dφ∗d cos θ̄∗dφ̄∗

=
α2β

124πs
Br(χ̃− → χ̃0

1f1f̄2)Br(χ̃+ → χ̃0
1f̄3f4)

×Σ(θ∗, φ∗; θ̄∗, φ̄∗) (39)
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can be decomposed into sixteen independent angular parts

Σ = Σunpol + cos θ∗κP + cos θ̄∗κ̄P̄ + cos θ∗ cos θ̄∗κκ̄Q
+ sin θ∗ cos φ∗κU + sin θ∗ sinφ∗κŪ
+ sin θ̄∗ cos φ̄∗κ̄V + sin θ̄∗ sin φ̄∗κ̄V̄
+ sin θ∗ cos φ∗ cos θ̄∗κκ̄W + sin θ∗ sinφ∗ cos θ̄∗κκ̄W̄
+ cos θ∗ sin θ̄∗ cos φ̄∗κκ̄X + cos θ∗ sin θ̄∗ sin φ̄∗κκ̄X̄
+ sin θ∗ sin θ̄∗ cos(φ∗ + φ̄∗)κκ̄Y
+ sin θ∗ sin θ̄∗ sin(φ∗ + φ̄∗)κκ̄Ȳ
+ sin θ∗ sin θ̄∗ cos(φ∗ − φ̄∗)κκ̄Z
+ sin θ∗ sin θ̄∗ sin(φ∗ − φ̄∗)κκ̄Z̄ (40)

The sixteen coefficients are combinations of helicity ampli-
tudes, corresponding to the unpolarized cross section, 2×3
polarization components and 3× 3 spin–spin correlations.

(i) Unpolarized cross section:

Σunpol =
1
4

∫
d cos Θ

∑
σ=±

[|〈σ; ++〉|2 + |〈σ; +−〉|2

+|〈σ;−+〉|2 + |〈σ;−−〉|2] (41)

(ii) Polarization components:

P =
1
4

∫
d cos Θ

∑
σ=±

[|〈σ; ++〉|2 + |〈σ; +−〉|2

−|〈σ;−+〉|2 − |〈σ;−−〉|2]
P̄ =

1
4

∫
d cos Θ

∑
σ=±

[|〈σ; ++〉|2 + |〈σ;−+〉|2

−|〈σ; +−〉|2 − |〈σ;−−〉|2]
U =

1
2

∫
d cos Θ

∑
σ=±

Re {〈σ;−+〉〈σ; ++〉∗

+〈σ;−−〉〈σ; +−〉∗}
V =

1
2

∫
d cos Θ

∑
σ=±

Re {〈σ; +−〉〈σ; ++〉∗

+〈σ;−−〉〈σ;−+〉∗} (42)

and Ū , V̄ defined as U ,V after replacing Re by Im.

(iii) Spin–spin correlations:

Q =
1
4

∫
d cos Θ

∑
σ=±

[|〈σ; ++〉|2 − |〈σ; +−〉|2

−|〈σ;−+〉|2 + |〈σ;−−〉|2]
W =

1
2

∫
d cos Θ

∑
σ=±

Re {〈σ;−+〉〈σ; ++〉∗
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Fig. 7. The energy dependence of the ratios P2/Q and P2/Y
for the same set of parameters as for the cross section (18);
solid line for the gaugino case, dashed line for the higgsino
case, and dot-dashed line for the mixed case

−〈σ;−−〉〈σ; +−〉∗}
X =

1
2

∫
d cos Θ

∑
σ=±

Re {〈σ; +−〉〈σ; ++〉∗

−〈σ;−−〉〈σ;−+〉∗}
Y =

1
2

∫
d cos Θ

∑
σ=±

Re
{

〈σ;−−〉〈σ; ++〉∗
}

Z =
1
2

∫
d cos Θ

∑
σ=±

Re
{

〈σ;−+〉〈σ; +−〉∗
}

(43)

and W̄, X̄ , Ȳ, Z̄ defined as W,X ,Y,Z after replacing Re
by Im.

Since loops and the width of the Z–boson can be ne-
glected for high energies, the helicity amplitudes in (12)
can be taken real in CP–invariant theories. In this ap-
proximation the six functions Ū , V̄, W̄, X̄ , Ȳ, Z̄ can be dis-
carded. Moreover, from CP–invariance, 〈σ;λλ̄〉 =
−(−)(λ−λ̄)〈σ;−λ̄ − λ〉, it follows that P̄ = −P, U = −V
and W = X . The overall topology is therefore determined
by seven independent functions: Σunpol,P,Q,U ,W,Y,Z.

In terms of the generalized charges, the correlation
functions Q and Y, which we will discuss next in detail,
are given by

Q = −4
∫

d cos Θ
[
(β2 + cos2 Θ)Q1

+(1 − β2) cos2 ΘQ2 + 2β cos ΘQ3
]

Y = −2
∫

d cos Θ(1 − β2) [Q1 + Q2] sin2 Θ (44)

The observables P, P̄, Q and Y enter into the cross
section together with the spin analysis-power κ(κ̄). CP–
invariance leads to the relation κ̄ = −κ. Therefore, tak-
ing the ratios P2/Q and P2/Y, these unknown quantities
can be eliminated so that the two ratios reflect unambigu-
ously the properties of the chargino system, being not af-
fected by the neutralinos. It is thus possible to study the
chargino sector in isolation by measuring the mass of the
lightest chargino, the total production cross section and
the spin(–spin) correlations. The energy dependence of the
two ratios P2/Q and P2/Y is shown in Fig. 7; the same
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parameters are chosen as in the previous figures. The two
ratios are sensitive to the quartic charges at sufficiently
large c.m. energies since the charginos are, on the aver-
age, unpolarized at the threshold, c.f. (24). Note that Y
vanishes for asymptotic energies so that an optimal energy
must be chosen not far above threshold to measure this
observable.

5 Observables and extraction
of SUSY parameters

The pair production of the lightest chargino χ±
1 is charac-

terized by the chargino mass mχ̃±
1
, the sneutrino mass mν̃ ,

and the two mixing angles cos 2φL,R. These three quanti-
ties can be determined from the production cross section
and the spin correlations.

The mass mχ̃±
1

can be measured very precisely near the
threshold where the production cross section σ(e+e− →
χ̃+

1 χ̃−
1 ) rises sharply with the velocity β =

√
1 − 4m2

χ±
1
/s.

Combining the energy variation of the cross section with
the measurement of the spin correlations, the sneutrino
mass mν̃ and the two mixing angles cos 2φL and cos 2φR

can be extracted.
The decay angles {θ∗, φ∗} and {θ̄∗, φ̄∗}, which are used

to measure the χ±
1 chiralities, are defined in the rest frame

of the charginos χ̃−
1 and χ̃+

1 , respectively. Since there are
two invisible neutralinos in the final state, they can not be
reconstructed completely. However, the longitudinal com-
ponents and the inner product of the transverse compo-
nents can be reconstructed from the momenta measured
in the laboratory frame (see e.g. [14]),

cos θ∗ =
1

β|p∗|
(

E

γ
− E∗

)
, cos θ̄∗ =

1
β|p̄∗|

(
Ē

γ
− Ē∗

)
sin θ∗ sin θ̄∗ cos(φ∗ + φ̄∗)

=
|p||p̄|

|p∗||p̄∗| cos ϑ +
(E − E∗/γ)

(
Ē − Ē∗/γ

)
β2|p∗||p̄∗| (45)

where γ =
√

s/2mχ̃±
1
. E(Ē) and E∗(Ē∗) are the ener-

gies of the two hadronic systems in the laboratory frame
and in the rest frame of the charginos, respectively; p(p̄)
and p∗(p̄∗) are the corresponding momenta. ϑ is the an-
gle between the momenta of the two hadronic systems; the
angle between the vectors in the transverse plane is given
by ∆φ∗ = 2π − (φ∗ + φ̄∗) for the reference frames defined
earlier. The polarization and correlation functions, P, Q
and Y can therefore be measured directly. Since the polar-
ization P is odd under parity and charge–conjugation, it is
necessary to identify the chargino electric charges in this
case. This can be accomplished by making use of the mixed
leptonic and hadronic decays of the chargino pairs. On the
other hand, the observables Q and Y are defined without
charge identification so that the dominant hadronic decay
modes of the charginos can be exploited.

The measurements of the cross section at an energy√
s, and either of the ratios P2/Q or P2/Y can be in-

terpreted as contour lines in the plane {cos 2φL, cos 2φR}

−1.0 −0.5 0.0 0.5 1.0
cos2φL
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0.0
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s2

φ R
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2
/Q=−0.24

P
2
/Y=−3.66

Fig. 8. Contours for the “measured values” (46) of the total
cross section (solid line), P2/Q (dashed line), and P2/Y (dot-
dashed line) for m

χ±
1

= 95 GeV [mν̃ = 250GeV]

pq > 0

p2

p2 q2+

-

-

q

p

q2 < 0

> 0
(2)

(1)

p2 q2 > 0

Fig. 9. Determination of (p, q) from p2 + q2, pq and p2 − q2.
The solutions are illustrated for positive values of pq

which intersect with large angles so that a high preci-
sion in the resolution can be achieved. A representative
example for the determination of cos 2φL and cos 2φR is
shown in Fig. 8. The mass of the light chargino is set to
mχ̃±

1
= 95 GeV, and the “measured” cross section, P2/Q

and P2/Y are taken to be

σ(e+e− → χ̃+
1 χ̃−

1 ) = 0.37 pb ,
P2

Q = −0.24 ,

P2

Y = −3.66 (46)

at
√

s = 500 GeV. The three contour lines meet at a
single point {cos 2φL, cos 2φR} = {−0.8,−0.5} for mν̃ =
250 GeV; note that the sneutrino mass can be determined
together with the mixing angles from the “measured val-
ues” in (46).
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The solutions can be discussed most transparently by
introducing the two triangular quantities

p = cot(φR − φL) and q = cot(φR + φL) (47)

They can be derived from the measured values cos 2φL

and cos 2φR up to a discrete ambiguity which is due to
the sign ambiguity in sin 2φL and sin 2φR. Solving the set

p2 + q2 =
2(sin2 2φL + sin2 2φR)
(cos 2φL − cos 2φR)2

pq =
cos 2φL + cos 2φR

cos 2φL − cos 2φR

p2 − q2 =
4 sin 2φL sin 2φR

(cos 2φL − cos 2φR)2
(48)

the solutions (p, q) in point (1) and point (2) of Fig. 9
are found for sin 2φL sin 2φR ≷ 0, respectively. A second
set is found by reversing the signs of the solutions pair-
wise. These solutions are shown for positive values of pq
in Fig. 9.

From the solutions (p, q) derived above, the SUSY pa-
rameters can be determined in the following way.

(i) tanβ: Depending on the relative magnitude of cos 2φR

and cos 2φL, the value of tanβ is either larger or smaller
than unity. The first case is realized for

cos 2φR > cos 2φL :

tanβ =
p2 − q2 ± 2

√
χ2(p2 + q2 + 2 − χ2)

(
√

1 + p2 −
√

1 + q2)2 − 2χ2
⇒ tanβ ≥ 1

(49)

where χ2 = m2
χ̃±

1
/m2

W . If the denominator is positive,
there are either up to two solutions for tanβ > 1 in point
(1) and none in point (2), or at most one in point (1) and
at most one in point (2). The possible solutions can be
counted in an analogous way if the denominator is neg-
ative; the rôles of point (1) and point (2) are just inter-
changed. The same counting is also valid in the second
case for

cos 2φR < cos 2φL :

tanβ =
(
√

1 + p2 −
√

1 + q2)2 − 2χ2

p2 − q2 ± 2
√

χ2(p2 + q2 + 2 − χ2)
⇒ tanβ ≤ 1

(50)

Thus, only a two–fold ambiguity is inferred from all the
solutions in point (1) and point (2).

(ii) M2, µ: The gaugino and higgsino mass parameters are
given in terms of p and q by the relations

M2=
mW√

2

[
(p + q) sinβ − (p − q) cos β

]

µ=
mW√

2

[
(p − q) sinβ − (p + q) cos β

]
(51)

The parameters M2, µ are uniquely fixed if tanβ is cho-
sen properly in point (1) and/or point (2). Since tanβ is

invariant under pairwise reflection of the signs in (p, q),
the definition M2 > 0 can be exploited to remove this
additional ambiguity.

As a result, the fundamental SUSY parameters
[tanβ;M2, µ] can be derived from the observables mχ̃±

1

and cos 2φR, cos 2φL up to at most a two–fold ambiguity.
Returning to the “experimental values” of mass, cross

section and spin correlations introduced above, the follow-
ing SUSY parameters are extracted:

Point (2) : [tanβ;M2, µ] =




[1.06; 83 GeV, −59 GeV]

[3.33; 248 GeV, 123 GeV]

(52)

Two solutions are derived from the “experimental values”
in this case; point (1) gives negative values for tanβ. In
practice, the errors in the observables mχ̃±

1
and cos 2φR,L

must be analyzed experimentally and the migration to the
fundamental SUSY parameters must be studied properly.
This however is beyond the scope of the purely theoretical
analysis presented in this paper.

6 Conclusions

We have analyzed how the parameters of the chargino sys-
tem, the mass of the lightest chargino mχ̃±

1
and the size of

the wino and higgsino components in the chargino wave–
functions, parameterized in terms of the two angles φL and
φR, can be extracted from pair production of the lightest
chargino state in e+e− annihilation. In addition to the to-
tal production cross section, angular correlations among
the chargino decay products give rise to two independent
observables which can be measured directly despite of the
two invisible neutralinos in the final state.

From the chargino mass mχ̃±
1

and the two mixing an-
gles φL and φR, the fundamental supersymmetric parame-
ters tan β, M2 and µ can be extracted up to at most a two-
fold discrete ambiguity. Moreover, from the energy distri-
bution of the final particles in the decay of the chargino,
the mass of the lightest neutralino can be measured; this
allows to determine the parameter M1 so that also the
neutralino mass matrix can be reconstructed in a model-
independent way.

The analysis has been carried out for scenarios in which
the chargino sector is CP–invariant. The generalization to
CP non–invariant theories [12,15] is touched upon in a
brief appendix for completeness.
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∆C =

√(
M2

2 + |µ|2 + 2m2
W

)2
− 4

(
M2

2 |µ|2 − 2m2
W M2 |µ| sin 2β cos θ + m4

W sin2 2β
)

(57)

7 Appendix: Complex mass parameters

In CP–noninvariant theories, the gaugino mass M2 and
the Higgs mass parameter µ can be complex. However, by
reparametrizations of the fields, M2 can be assumed real
and positive without loss of generality [12] so that the only
non–trivial invariant phase is attributed to µ:

µ = |µ|eiθ (53)

In these theories the complex chargino mass matrix (1) is
diagonalized by two unitary matrices UL and UR:

UL,R

(
W̃−

H̃−

)
L,R

=
(

χ̃−
1

χ̃−
2

)
L,R

(54)

They can be parameterized in the following way:

UL =
(

cos φL e−iβL sinφL

−eiβL sinφL cos φL

)

UR =
(

eiγ1 0
0 eiγ2

) (
cos φR e−iβR sinφR

−eiβR sinφR cos φR

)
(55)

The eigenvalues m2
χ̃±

1
involve the angle θ:

m2
χ̃±

1,2
=

1
2

[
M2

2 + |µ|2 + 2m2
W ∓ ∆C

]
(56)

with (see top of the page (57)). The four nontrivial phase
angles {βL, βR, γ1, γ2} also depend on the invariant angle
θ:

tanβL=− sin θ

cos θ + M2
|µ| cot β

,

tanβR=+
sin θ

cos θ + M2
|µ| tanβ

tan γ1=+
sin θ

cos θ + M2
|µ|

m2
χ̃

±
1

−|µ|2

m2
W sin 2β

,

tan γ2=− sin θ

cos θ + M2
|µ|

m2
W sin 2β

m2
χ̃

±
2

−M2
2

(58)

The mixing angles φLR are given by the relations

cos 2φL = −M2
2 − |µ|2 − 2m2

W cos 2β

∆C

sin 2φL =

−2mW

√
M2

2 + |µ|2 + (M2
2 − |µ|2) cos 2β + 2M2|µ| sin 2β cos θ

∆C

and

cos 2φR = −M2
2 − |µ|2 + 2m2

W cos 2β

∆C

sin 2φR = (59)

−2mW

√
M2

2 + |µ|2 − (M2
2 − |µ|2) cos 2β + 2M2|µ| sin 2β cos θ

∆C

The χ̃1χ̃1γ and χ̃1χ̃1Z vertices are real and they can
be expressed by the mixing angles φL,R in the same way
as in CP–invariant theories. Even though the new phases
enter the eν̃χ̃1 vertex, they do not affect the ν̃–exchange
amplitude. As a result, the analytical expressions of all
observables in the diagonal process e+e− → χ̃+

1 χ̃−
1 remain

the same when described in terms of the mixing angles
φL and φR. Since the density matrix (31) is factored out
completely and the form of the sixteen coefficients in (41),
(42) and (43) does not change by CP-noninvariance, the
analysis described in this paper is not changed.

If the phase θ is introduced, the observables mχ̃±
1
, φL

and φR are insufficient to reconstruct the fundamental
SUSY parameters tanβ, M2, |µ| and θ in toto. In this
complex situation, one more observable is needed. The ad-
ditional information may be extracted, for example, from
the χ̃±

2 mass. [Else the neutralino system may be exploited
to provide the additional observable [15]]. The CP–odd
phase θ can be determined directly in the non–diagonal
process e+e− → χ̃+

1 χ̃−
2 , see [12].
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